Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two-dimensional models assuming axisymmetry are an economical way to explore the long-term evolution of black hole accretion disks, but they are only realistic if the feedback of the nonaxisymmetric turbulence on the mean momentum and magnetic fields is incorporated. Dynamo terms added to the 2D induction equation should be calibrated to 3D magnetohydrodynamics simulations. For generality, the dynamo tensors should be calibrated as functions of local variables rather than explicit functions of spatial coordinates in a particular basis. In this paper, we study the feedback of nonaxisymmetric features on the 2D mean fields using a global 3D, relativistic, Cartesian simulation from the illinoisgrmhd code. We introduce new methods for estimating overall dynamo alpha and turbulent diffusivity effects, as well as measures of the dominance of nonaxisymmetric components of energies and fluxes within the disk interior. We attempt closure models of the dynamo electromotive force using least-squares fitting, considering both models where coefficient tensors are functions of space and more global, covariant models. None of these models are judged satisfactory, but we are able to draw conclusions on what sorts of generalizations are and are not promising.more » « less
-
We investigate the influence of inelastic neutrino microphysics in general-relativistic magnetohydrodynamics simulations of a hypermassive neutron star. In particular, we include species/energy groups coupled neutrino-matter interactions, such as inelastic neutrino-electron scattering and electron-positron annihilation kernels, into simulations up to 50 ms. Neutrino-electron inelastic scattering is known to have effective neutrino-matter energy exchange. We show that, with neutrino-electron inelastic scattering, simulations predict 75% higher disc mass with slightly different mass-averaged compositions, and 18% more ejected mass with similar distributions. The enhancement of the mass of the disc and the ejecta results in stronger baryon pollution, leading to less favorable jet launching environments. Furthermore, neutrino luminosities are about 50%, 40%, and 30% higher for electron neutrino, electron antineutrino, and heavy-lepton neutrinos. In contrast, we do not see any significant impacts due to electron-positron annihilation.more » « less
-
Abstract We compare two-moment-basedenergy-dependentand three variants ofenergy-integratedneutrino transport general-relativistic magnetohydrodynamics simulations of a hypermassive neutron star. To study the impacts due to the choice of the neutrino transport schemes, we perform simulations with the same setups and input neutrino microphysics. We show that the main differences between energy-dependent and energy-integrated neutrino transport are found in the disk and ejecta properties, as well as in the neutrino signals. The properties of the disk surrounding the neutron star and the ejecta in energy-dependent transport are very different from the ones obtained using energy-integrated schemes. Specifically, in the energy-dependent case, the disk is more neutron-rich at early times and becomes geometrically thicker at later times. In addition, the ejecta is more massive and, on average, more neutron-rich in the energy-dependent simulations. Moreover, the average neutrino energies and luminosities are about 30% higher. Energy-dependent neutrino transport is necessary if one wants to better model the neutrino signals and matter outflows from neutron star merger remnants via numerical simulations.more » « less
-
Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work [CQG23(2006) 6709]. In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 binary black hole simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Ψ0boundary condition usually used by SpEC.more » « less
-
In numerical simulations of binary neutron star systems, the equation of state of the dense neutron star matter is an important factor in determining both the physical realism and the numerical accuracy of the simulations. Some equations of state used in simulations are 𝐶2 or smoother in the pressure/density relationship function, such as a polytropic equation of state, but may not have the flexibility to model stars or remnants of different masses while keeping their radii within known astrophysical constraints. Other equations of state, such as tabular or piecewise polytropic, may be flexible enough to model additional physics and multiple stars’ masses and radii within known constraints, but are not as smooth, resulting in additional numerical error. We will study in this paper a recently developed family of equation of state, using a spectral expansion with sufficient free parameters to allow for a larger flexibility than current polytropic equations of state, and with sufficient smoothness to reduce numerical errors compared to tabulated or piecewise polytropic equations of state. We perform simulations at three mass ratios with a common chirp mass, using two distinct spectral equations of state, and at multiple numerical resolutions. We evaluate the gravitational waves produced from these simulations, comparing the phase error between resolutions and equations of state, as well as with respect to analytical models. From our simulations, we estimate that the phase difference at the merger for binaries with a dimensionless weighted tidal deformability difference greater than ΔΛ≈55 can be captured by the spectral Einstein code for these equations of state.more » « less
-
Abstract We present a discontinuous Galerkin-finite difference hybrid scheme that allows high-order shock capturing with the discontinuous Galerkin method for general relativistic magnetohydrodynamics in dynamical spacetimes. We present several optimizations and stability improvements to our algorithm that allow the hybrid method to successfully simulate single, rotating, and binary neutron stars. The hybrid method achieves the efficiency of discontinuous Galerkin methods throughout almost the entire spacetime during the inspiral phase, while being able to robustly capture shocks and resolve the stellar surfaces. We also use Cauchy-characteristic evolution to compute the first gravitational waveforms at future null infinity from binary neutron star mergers. The simulations presented here are the first successful binary neutron star inspiral and merger simulations using discontinuous Galerkin methods.more » « less
An official website of the United States government
